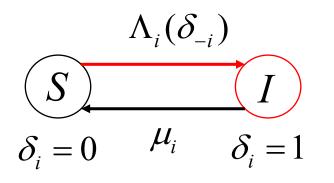


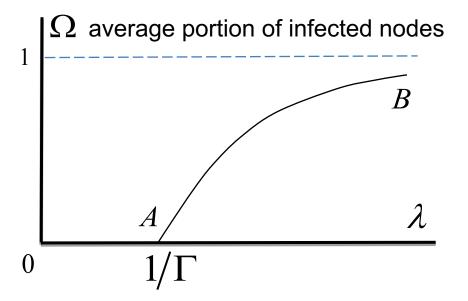
INFORMATION TECHNOLOGY LABORATORY


Network Formation by Contagion Averse Agents: Modeling Bounded Rationality with Logit Learning

Vladimir Marbukh, NIST

ASONAM-DYNO 2018

Susceptible Infected Susceptible (SIS) Model



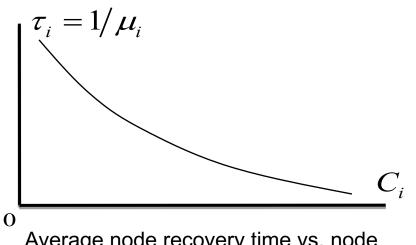
$$egin{aligned} &\Lambda_i(\delta_{-i}) = \lambda \sum_{j
eq i} A_{ij} \delta_j \ &A_{ij} = 0,1 & ext{adjacency matrix} \ &\delta(t) = (\delta_i(t)) & ext{Markov process} \end{aligned}$$

F Perron-Frobenius eigenvalue of matrix

 $B = \left(A_{ij} / \mu_i\right)_{i,j=1}^N$

For uncorrelated random network with $\mu_i = \mu$: $\Gamma \approx \mu^{-1} \max \{ d^{\max}, \langle d^2 \rangle / \langle d \rangle \}$ where d_i node i degree

Economics of SIS Infection, given Topology


Node i loss:

$$Loss_i(C) = H_i P_i(C) + C_i$$

where $P_i(C)$ is node infection probability

Socially optimal investments:

$$C^{opt} = \arg\min_{C_i \ge 0} \sum_i [H_i P_i(C) + C_i]$$

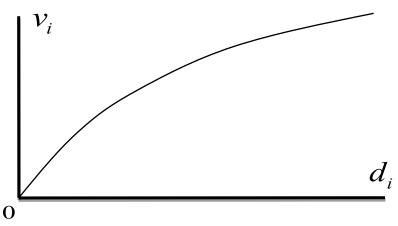
Average node recovery time vs. node investment

Selfishly optimal investments: game theoretic framework: Nash equilibrium:

$$C_{i}^{*} = \arg\min_{C_{i} \ge 0} [H_{i}P_{i}(C_{i}, C_{-i}^{*}) + C_{i}]$$

Price of Anarchy: $PoA(C^{*}|C^{opt}) \coloneqq \frac{\sum_{i} [H_{i}P_{i}(C^{*}) + C_{i}^{*}]}{\sum_{i} [H_{i}P_{i}(C^{opt}) + C_{i}^{opt}]}$

Economics of SIS Infection & Topology


Instantaneous node utility

$$U_i(C, \delta_i | A) = (1 - H_i \delta_i) v(d_i) - C_i$$

where
$$d_i = \sum_{j \neq i} A_{ij}, \quad H_i > 1.$$

Assumption: network evolves much slower than SIS infection develops

Averaged over fast time scale node utility $\overline{U}_i(C|A) = [1 - H_i P_i(C|A)]v(d_i) - C_i$

Node utility of connectivity

Social network optimization:
$$A^{opt}(C) = \arg \max_{A} \sum_{i} \overline{U}_{i}(C|A)$$

Selfish network optimization by node i: game theoretic framework: Nash equilibrium:

$$A_{ij}^*(C) = \arg\max_{A_{ij}} \sum_i \overline{U}_i(C|A)$$

Optimal network topology depends on investments C, e.g., socially optimal or selfish

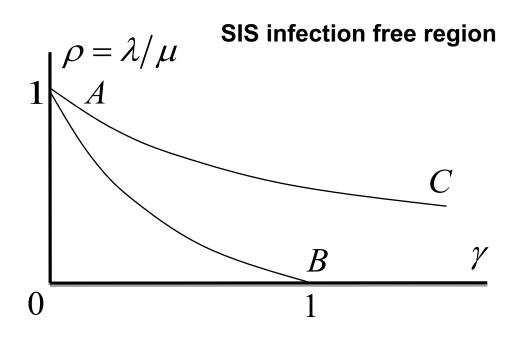
SIS Infection on Growing Network

Consider growing network subject to SIS without investments, where node recovery rate and infection loss depend on the node degree: $\mu_i = v_{d_i}$, $H_i = h_{d_i}$

Consider selfish network formation, where arriving node utility of connecting to an existing node depends on this node degree d and infection status δ :

$$u_d(\delta) = (1 - h_d \delta) \log \varphi(d)$$

where h > 1, preference for connectivity characterized by $v_i = \log \varphi(d_i)$ Consider logit attachment probabilities to node i: $\alpha_i \sim \exp[T^{-1}u_{d_i}(p_i)]$ $T \to 0, T \to \infty$ correspond to complete rationality, randomness $0 < T < \infty$ describes bounded rationality Consider $\varphi(d) = d^\beta, \ \beta > 0$: $v_i = \beta \log d_i, \ \alpha_i \sim d_i^{(\beta/T)(1-h_{d_i}\delta_i)}$ If $h_{d_i} >> 1, \qquad \alpha_i \sim \begin{cases} d_i^{\beta/T} & \text{if } \delta_i = 0\\ 0 & \text{if } \delta_i = 1 \end{cases}$



Preferential Attachment under SIS Infection

Case $h_d = 0$ considered in [P. L. Krapivsky, et al, Connectivity of Growing Random Networks, 2000]

Different behaviors arise for $\gamma < 1$, $\gamma > 1$, and $\gamma = 1$, where $\gamma = \beta/T$

- $\gamma < 1$ stretched exponential node degree distribution
- $\gamma > 1$ almost a star (winner gets almost all)
- $\gamma = 1$ power law with exponent between two and infinity

Without infection avoidance

 $h = 0 \rightarrow 0AB$

With strong infection avoidance

 $h >> 1 \rightarrow 0AC$

Conjecture: network formation/rewiring may counteract inefficiencies of selfish investments due to externalities

INFORMATION TECHNOLOGY LABORATORY

Thank You!